Continued fractions for certain algebraic power series
نویسندگان
چکیده
منابع مشابه
ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملalgebraic indepenence of certain formal power series (ii)
we shall extend the results of [5] and prove that if f = z o a x ? z [[x]] is algebraic over q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over q (x) if and only if f , f ,.., f are algebraically independent over q (x)
متن کاملalgebraic independence of certain formal power series (i)
we give a proof of the generalisation of mendes-france and van der poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of carlitz, we shall introduce a class of algebraically independent series.
متن کاملOn Continued Fractions over the Field of Formal Power Series
This paper dealt with by studying continued fractions of the form c 1 1 + c 1 1 + · · · + c 1 1 + · · · Necessary and sufficient conditions are given for a sequence of it to be convergent in the formal powers series case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1986
ISSN: 0022-314X
DOI: 10.1016/0022-314x(86)90083-1